Microstructures and mechanical performance of polyelectrolyte/nanocrystalline TiO2 nanolayered composites
نویسندگان
چکیده
Biological materials with hierarchically laminated structures usually exhibit a good synergy between strength and fracture toughness. Here, we show that a bio-inspired (polyelectrolyte (PE)/TiO2)4 nanolayered composite with a thickness ratio of TiO2 and amorphous PE layers of about 1.1 has been prepared successfully on Si substrates by layer-by-layer self-assembly and chemical bath deposition methods. Microstructures of the nanolayered composite were investigated by scanning electron microscopy, secondary ion mass spectroscopy, and high-resolution transmission microscopy. Mechanical performance of the composite was characterized by instrumented indentation. The composite consisting of 17.9-nm-thick nanocrystalline TiO2 and 16.4-nm-thick amorphous PE layers has a strength of about 245 MPa, which is close to that of shells, while the fracture toughness of the composite, KIC = 1.62 ± 0.30 MPa · m1/2, is evidently higher than that of the bulk TiO2. A possible strategy to build the composite at nanoscale for high mechanical performance was addressed.
منابع مشابه
EFFECTS OF TiO2 ADDITIVE ON ELECTROCHEMICAL HYDROGEN STORAGE PROPERTIES OF NANOCRYSTALLINE /AMORPHOUS Mg2Ni INTERMETALLIC ALLOY
Abstract: Mg2Ni alloy and Mg2Ni–x wt% TiO2 (x = 3, 5 and 10 wt %) composites are prepared by mechanical alloying. The produced alloy and composites are characterized as the particles with nanocrystalline/amorphous structure. The effects of TiO2 on hydrogen storage properties are investigated using anodic polarization and electrochemical impedance spectroscopy. It is demonstrated that the initia...
متن کاملMicrostructures and strengthening mechanisms of Cu/Ni/W nanolayered composites
(2013) Microstruc-tures and strengthening mechanisms of Cu/Ni/W nanolayered composites. Notice: Changes introduced as a result of publishing processes such as copy-editing and formatting may not be reflected in this document. For a definitive version of this work, please refer to the published source: Abstract Cu/Ni/W nanolayered composites with individual layer thickness ranging from 5 nm to 3...
متن کاملMechanical Characterization and Wear Behavior of Nano TiO2 Particulates Reinforced Al7075 Alloy Composites
In the current research work synthesis, characterization, mechanical and wear behavior of 5 and 10 wt. % of nano TiO2 particulates reinforced Al7075 alloy composites are inspected. The Al7075 alloy and nano TiO2 particle composites were provided by melt stir system. After the preparation, the prepared composites were analyzed by SEM, EDS, and XRD for inquiring the microstr...
متن کاملThe Comparison of MgO and TiO2 Additives Role on Sintering Behavior and Microstructures of Reaction-Sintered Alumina-Zirconia-Mullite Composite
Alumina-Mullite-Zirconia ceramic composites were prepared by reaction sintering of alumina, zircon mixture and the sintering aids of magnesia and titania at temperatures of 1400 and 1600 C for 2 hours. The development of different phases and microstructures of the composites were analysed to assess the relative influence of the additives on the formation of alumina-zirconia-mullite compos...
متن کاملToughening Mechanisms in Nanolayered MAX Phase Ceramics—A Review
Advanced engineering and functional ceramics are sensitive to damage cracks, which delay the wide applications of these materials in various fields. Ceramic composites with enhanced fracture toughness may trigger a paradigm for design and application of the brittle components. This paper reviews the toughening mechanisms for the nanolayered MAX phase ceramics. The main toughening mechanisms for...
متن کامل